Host Protein General Information (ID: PT0754)
  Protein Name
Poly [ADP-ribose] polymerase 1 (PARP1)
  Gene Name
PARP1
  Host Species
Homo sapiens
  Uniprot Entry Name
PARP1_HUMAN
  Protein Families
ARTD/PARP family
  EC Number
2.4.2.3.; 2.4.2.-
  Subcellular Location
Nucleus; nucleolus Chromosome
  External Link
NCBI Gene ID
142
Uniprot ID
P09874
Ensembl ID
ENSG00000143799
HGNC ID
HGNC:270
  Function in Host
Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair. Mediates glutamate, aspartate, serine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosylgroup of NAD (+) is transferred to the acceptor carboxyl group of targetresidues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer withan average chain length of 20-30 units. Serine ADP-ribosylation of proteins constitutes the primary form ofADP-ribosylation of proteins in response to DNA damage. Mainly mediates glutamate and aspartate ADP-ribosylation of target proteins in absence of HPF1. Following interaction with HPF1, catalyzes serineADP-ribosylation of target proteins; HPF1 conferring serine specificityby completing the PARP1 active site. Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1. PARP1 initiates the repair of DNAbreaks: recognizes and binds DNA breaks within chromatin and recruitsHPF1, licensing serine ADP-ribosylation of target proteins, such ashistones, thereby promoting decompaction of chromatin and therecruitment of repair factors leading to the reparation of DNA strandbreaks. In addition to baseexcision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sitesand promotes homologous recombination repair by mediating poly-ADP-ribosylation. Mediates the poly (ADP-ribosyl) ation of a number of proteins, including itself, APLF and CHFR. In addition to proteins, also ableto ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand breaktermini containing terminal phosphates and a 2'-OH group in single- anddouble-stranded DNA, respectively. Required for PARP9and DTX3L recruitment to DNA damage sites. PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid andspecific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNAdamage sites. Acts as a regulator of transcription:positively regulates the transcription of MTUS1 and negativelyregulates the transcription of MTUS2/TIP150. Plays arole in the positive regulation of IFNG transcription in T-helper 1cells as part of an IFNG promoter-binding complex with TXK and EEF1A1. Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5. Nuclear ATPgeneration is required for extensive chromatin remodeling events thatare energy-consuming. [1-7]
    Click to Show/Hide
  Related KEGG Pathway
Base excision repair hsa03410            Pathway Map 
NF-kappa B signaling pathway hsa04064            Pathway Map 
Apoptosis hsa04210            Pathway Map 
Necroptosis hsa04217            Pathway Map 
Diabetic cardiomyopathy hsa05415            Pathway Map 
  3D Structure

 Full List of Virus RNA Interacting with This Protien
            RNA Region: Not Specified Virus Region (hCoV-19/France/IDF-220-95/2020 )
              RNA Region Details RNA Info Click to show the detail information of this RNA binding region [8]
              Strains Name
hCoV-19/France/IDF-220-95/2020
              RNA Binding Region
Not Specified Virus Region
              Virus Name
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
              Interaction Type Direct interaction
              Infection Cells HEK293 Cells (Human embryonic kidney cell)  (CVCL_0045 )
              Cell Originated Tissue Kidney
              Infection Time 48 h
              Interaction Score SAINT score ≥ 0.79
              Method Description comprehensive identification of RNA-binding proteins by massspectrometry (ChIRP-MS)

Differential Gene Expression During SARS-COV-2 Infection
GEO Accession: GSE152641
Sample Type: Blood
Samples Details: Healthy Control: 24; COVID-19: 62
Platform: GPL24676 Illumina NovaSeq 6000
Picture Not Found

GEO Accession: GSE162835
Sample Type: Nasopharyngeal Swabs
Samples Details: COVID-19 (Mild Symptoms): 37; COVID-19 (Moderate Symptoms): 10; COVID-19 (Severe Symptoms): 3
Platform: GPL24676 Illumina NovaSeq 6000
Picture Not Found

GEO Accession: GSE175779
Sample Type: Human Bronchial Epithelial Cells
Samples Details: Healthy Control: 4 (0, 24, 48, 72 and 96 h); COVID-19: 4 (24, 48, 72 and 96 h)
Platform: GPL18573 Illumina NextSeq 500
Picture Not Found

Protein Phosphorylation after Virus Infection
T368 [9]
Picture Not Found
T95 [9]
Picture Not Found

Potential Drug(s) that Targets This Protein
Drug Name DrunkBank ID Pubchem ID TTD ID REF
BMN-673TS DB11760  135565654  . [10]
Lopinavir DB01601  92727  D0U5GB  [11]
Niraparib DB11793  24958200  D00BMF  [10]
Olaparib DB09074  23725625  D0J9HW  [10]
Ritonavir DB00503  392622  D0ZU9R  [11]
Rucaparib DB12332  9931954  D01SHZ  [10]
Triparanol . 8602  . [10]
Triparanol . 71488522  . [10]
Triparanol . . . [11]
Triparanol . 117734810  . [12]
Vitamin C DB14482  54670067  D07AHW  [11]
Vitamin E DB00163  14985  D02TQO  [11]

Protein Sequence Information
MAESSDKLYRVEYAKSGRASCKKCSESIPKDSLRMAIMVQSPMFDGKVPHWYHFSCFWKVGHSIRHPDVEVDGFSELRWDDQQKVKKTAEAGGVTGKGQDGIGSKAEKTLGDFAAEYAKSNRSTCKGCMEKIEKGQVRLSKKMVDPEKPQLGMIDRWYHPGCFVKNREELGFRPEYSASQLKGFSLLATEDKEALKKQLPGVKSEGKRKGDEVDGVDEVAKKKSKKEKDKDSKLEKALKAQNDLIWNIKDELKKVCSTNDLKELLIFNKQQVPSGESAILDRVADGMVFGALLPCEECSGQLVFKSDAYYCTGDVTAWTKCMVKTQTPNRKEWVTPKEFREISYLKKLKVKKQDRIFPPETSASVAATPPPSTASAPAAVNSSASADKPLSNMKILTLGKLSRNKDEVKAMIEKLGGKLTGTANKASLCISTKKEVEKMNKKMEEVKEANIRVVSEDFLQDVSASTKSLQELFLAHILSPWGAEVKAEPVEVVAPRGKSGAALSKKSKGQVKEEGINKSEKRMKLTLKGGAAVDPDSGLEHSAHVLEKGGKVFSATLGLVDIVKGTNSYYKLQLLEDDKENRYWIFRSWGRVGTVIGSNKLEQMPSKEDAIEHFMKLYEEKTGNAWHSKNFTKYPKKFYPLEIDYGQDEEAVKKLTVNPGTKSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYSILSEVQQAVSQGSSDSQILDLSNRFYTLIPHDFGMKKPPLLNNADSVQAKVEMLDNLLDIEVAYSLLRGGSDDSSKDPIDVNYEKLKTDIKVVDRDSEEAEIIRKYVKNTHATTHNAYDLEVIDIFKIEREGECQRYKPFKQLHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMVSKSANYCHTSQGDPIGLILLGEVALGNMYELKHASHISKLPKGKHSVKGLGKTTPDPSANISLDGVDVPLGTGISSGVNDTSLLYNEYIVYDIAQVNLKYLLKLKFNFKTSLW
    Click to Show/Hide

References
1 Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation Evidence for active site similarities to the ADP-ribosylating toxins. J Biol Chem. 1995 Feb 17;270(7):3247-54.
2 An HPF1/PARP1-Based Chemical Biology Strategy for Exploring ADP-Ribosylation. Cell. 2020 Nov 12;183(4):1086-1102.e23.
3 Comprehensive ADP-ribosylome analysis identifies tyrosine as an ADP-ribose acceptor site. EMBO Rep. 2018 Aug;19(8):e45310.
4 Serine ADP-Ribosylation Depends on HPF1. Mol Cell. 2017 Mar 2;65(5):932-940.e6.
5 Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun. 2014 Jul 21;5:4426.
6 Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications. J Am Chem Soc. 2009 Oct 14;131(40):14258-60.
7 Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry. 1997 Oct 7;36(40):12147-54.
8 Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Rep. 2022 Apr 26;39(4):110744.
9 Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 2021 Jun;594(7862):246-252.
10 Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell. 2021 Apr 29;184(9):2394-2411.e16.
11 Network analysis and molecular mapping for SARS-CoV-2 to reveal drug targets and repurposing of clinically developed drugs. Virology. 2021 Mar;555:10-18.
12 Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int J Biol Macromol. 2021 Apr 30;177:1-9.